Koos Classification of Vestibular Schwannoma via Image Translation-Based Unsupervised Cross-Modality Domain Adaptation

03/14/2023
by   Tao Yang, et al.
0

The Koos grading scale is a classification system for vestibular schwannoma (VS) used to characterize the tumor and its effects on adjacent brain structures. The Koos classification captures many of the characteristics of treatment deci-sions and is often used to determine treatment plans. Although both contrast-enhanced T1 (ceT1) scanning and high-resolution T2 (hrT2) scanning can be used for Koos Classification, hrT2 scanning is gaining interest because of its higher safety and cost-effectiveness. However, in the absence of annotations for hrT2 scans, deep learning methods often inevitably suffer from performance deg-radation due to unsupervised learning. If ceT1 scans and their annotations can be used for unsupervised learning of hrT2 scans, the performance of Koos classifi-cation using unlabeled hrT2 scans will be greatly improved. In this regard, we propose an unsupervised cross-modality domain adaptation method based on im-age translation by transforming annotated ceT1 scans into hrT2 modality and us-ing their annotations to achieve supervised learning of hrT2 modality. Then, the VS and 7 adjacent brain structures related to Koos classification in hrT2 scans were segmented. Finally, handcrafted features are extracted from the segmenta-tion results, and Koos grade is classified using a random forest classifier. The proposed method received rank 1 on the Koos classification task of the Cross-Modality Domain Adaptation (crossMoDA 2022) challenge, with Macro-Averaged Mean Absolute Error (MA-MAE) of 0.2148 for the validation set and 0.26 for the test set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro