Labeled Packing of Cycles and Circuits
In 2013, Duchêne, Kheddouci, Nowakowski and Tahraoui [4, 9] introduced a labeled version of the graph packing problem. It led to the introduction of a new parameter for graphs, the k-labeled packing number λ k. This parameter corresponds to the maximum number of labels we can assign to the vertices of the graph, such that we will be able to create a packing of k copies of the graph, while conserving the labels of the vertices. The authors intensively studied the labeled packing of cycles, and, among other results, they conjectured that for every cycle C n of order n = 2k + x, with k > 2 and 1 < x < 2k -- 1, the value of λ k (C n) was 2 if x was 1 and k was even, and x + 2 otherwise. In this paper, we disprove this conjecture by giving a counter example. We however prove that it gives a valid lower bound, and we give sufficient conditions for the upper bound to hold. We then give some similar results for the labeled packing of circuits.
READ FULL TEXT 
  
  
     share
 share