Language Modelling for Source Code with Transformer-XL

07/31/2020
by   Thomas Dowdell, et al.
0

It has been found that software, like natural language texts, exhibits "naturalness", which can be captured by statistical language models. In recent years, neural language models have been proposed to represent the naturalness of software through deep learning. In this paper, we conduct an experimental evaluation of state-of-the-art neural language models for source code, including RNN-based models and Transformer-XL based models. Through experiments on a large-scale Python code corpus, we find that the Transformer-XL model outperforms RNN-based models (including LSTM and GRU models) in capturing the naturalness of software, with far less computational cost.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset