Large-scale Self-Supervised Speech Representation Learning for Automatic Speaker Verification

10/12/2021
by   Zhengyang Chen, et al.
0

The speech representations learned from large-scale unlabeled data have shown better generalizability than those from supervised learning and thus attract a lot of interest to be applied for various downstream tasks. In this paper, we explore the limits of speech representations learned by different self-supervised objectives and datasets for automatic speaker verification (ASV), especially with a well-recognized SOTA ASV model, ECAPA-TDNN [1], as a downstream model. The representations from all hidden layers of the pre-trained model are firstly averaged with learnable weights and then fed into the ECAPA-TDNN as input features. The experimental results on Voxceleb dataset show that the weighted average representation is significantly superior to FBank, a conventional handcrafted feature for ASV. Our best single system achieves 0.564 of VoxCeleb1, separately. Accordingly, the ensemble system with three pre-trained models can further improve the EER to 0.431 Among the three evaluation trials, our best system outperforms the winner system [2] of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC2021) on the VoxCeleb1-E trial.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset