Learnable MFCCs for Speaker Verification

02/20/2021
by   Xuechen Liu, et al.
0

We propose a learnable mel-frequency cepstral coefficient (MFCC) frontend architecture for deep neural network (DNN) based automatic speaker verification. Our architecture retains the simplicity and interpretability of MFCC-based features while allowing the model to be adapted to data flexibly. In practice, we formulate data-driven versions of the four linear transforms of a standard MFCC extractor – windowing, discrete Fourier transform (DFT), mel filterbank and discrete cosine transform (DCT). Results reported reach up to 6.7% (VoxCeleb1) and 9.7% (SITW) relative improvement in term of equal error rate (EER) from static MFCCs, without additional tuning effort.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset