Learning Capacity: A Measure of the Effective Dimensionality of a Model
We exploit a formal correspondence between thermodynamics and inference, where the number of samples can be thought of as the inverse temperature, to define a "learning capacity” which is a measure of the effective dimensionality of a model. We show that the learning capacity is a tiny fraction of the number of parameters for many deep networks trained on typical datasets, depends upon the number of samples used for training, and is numerically consistent with notions of capacity obtained from the PAC-Bayesian framework. The test error as a function of the learning capacity does not exhibit double descent. We show that the learning capacity of a model saturates at very small and very large sample sizes; this provides guidelines, as to whether one should procure more data or whether one should search for new architectures, to improve performance. We show how the learning capacity can be used to understand the effective dimensionality, even for non-parametric models such as random forests and k-nearest neighbor classifiers.
READ FULL TEXT