Learning Parametric Closed-Loop Policies for Markov Potential Games

02/03/2018
by   Sergio Valcarcel Macua, et al.
0

Multiagent systems where the agents interact among themselves and with an stochastic environment can be formalized as stochastic games. We study a subclass, named Markov potential games (MPGs), that appear often in economic and engineering applications when the agents share some common resource. We consider MPGs with continuous state-action variables, coupled constraints and nonconvex rewards. Previous analysis are only valid for very simple cases (convex rewards, invertible dynamics, and no coupled constraints); or considered deterministic dynamics and provided open-loop (OL) analysis, studying strategies that consist in predefined action sequences. We present a closed-loop (CL) analysis for MPGs and consider parametric policies that depend on the current state and where agents adapt to stochastic transitions. We provide verifiable, sufficient and necessary conditions for a stochastic game to be an MPG, even for complex parametric functions (e.g., deep neural networks); and show that a CL Nash equilibrium (NE) can be found (or at least approximated) by solving a related optimal control problem (OCP). This is useful since solving an OCP---a single-objective problem---is usually much simpler than solving the original set of coupled OCPs that form the game---a multiobjective control problem. This is a considerable improvement over previously standard approach. We illustrate the theoretical contributions with an example by applying our approach to a noncooperative communications engineering game. We then solve the game with a deep reinforcement learning algorithm that learns policies that closely approximates an exact variational NE of the game.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset