Learning stochastic decision trees
We give a quasipolynomial-time algorithm for learning stochastic decision trees that is optimally resilient to adversarial noise. Given an η-corrupted set of uniform random samples labeled by a size-s stochastic decision tree, our algorithm runs in time n^O(log(s/ε)/ε^2) and returns a hypothesis with error within an additive 2η + ε of the Bayes optimal. An additive 2η is the information-theoretic minimum. Previously no non-trivial algorithm with a guarantee of O(η) + ε was known, even for weaker noise models. Our algorithm is furthermore proper, returning a hypothesis that is itself a decision tree; previously no such algorithm was known even in the noiseless setting.
READ FULL TEXT