Learning to Transfer

08/18/2017
by   Ying Wei, et al.
0

Transfer learning borrows knowledge from a source domain to facilitate learning in a target domain. Two primary issues to be addressed in transfer learning are what and how to transfer. For a pair of domains, adopting different transfer learning algorithms results in different knowledge transferred between them. To discover the optimal transfer learning algorithm that maximally improves the learning performance in the target domain, researchers have to exhaustively explore all existing transfer learning algorithms, which is computationally intractable. As a trade-off, a sub-optimal algorithm is selected, which requires considerable expertise in an ad-hoc way. Meanwhile, it is widely accepted in educational psychology that human beings improve transfer learning skills of deciding what to transfer through meta-cognitive reflection on inductive transfer learning practices. Motivated by this, we propose a novel transfer learning framework known as Learning to Transfer (L2T) to automatically determine what and how to transfer are the best by leveraging previous transfer learning experiences. We establish the L2T framework in two stages: 1) we first learn a reflection function encrypting transfer learning skills from experiences; and 2) we infer what and how to transfer for a newly arrived pair of domains by optimizing the reflection function. Extensive experiments demonstrate the L2T's superiority over several state-of-the-art transfer learning algorithms and its effectiveness on discovering more transferable knowledge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset