Leveraging text data for causal inference using electronic health records

06/09/2023
by   Reagan Mozer, et al.
0

Text is a ubiquitous component of medical data, containing valuable information about patient characteristics and care that are often missing from structured chart data. Despite this richness, it is rarely used in clinical research, owing partly to its complexity. Using a large database of patient records and treatment histories accompanied by extensive notes by attendant physicians and nurses, we show how text data can be used to support causal inference with electronic health data in all stages, from conception and design to analysis and interpretation, with minimal additional effort. We focus on studies using matching for causal inference. We augment a classic matching analysis by incorporating text in three ways: by using text to supplement a multiple imputation procedure, we improve the fidelity of imputed values to handle missing data; by incorporating text in the matching stage, we strengthen the plausibility of the matching procedure; and by conditioning on text, we can estimate easily interpretable text-based heterogeneous treatment effects that may be stronger than those found across categories of structured covariates. Using these techniques, we hope to expand the scope of secondary analysis of clinical data to domains where quantitative data is of poor quality or nonexistent, but where text is available, such as in developing countries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset