Lifelong Learning based Disease Diagnosis on Clinical Notes

02/27/2021
by   Zifeng Wang, et al.
0

Current deep learning based disease diagnosis systems usually fall short in catastrophic forgetting, i.e., directly fine-tuning the disease diagnosis model on new tasks usually leads to abrupt decay of performance on previous tasks. What is worse, the trained diagnosis system would be fixed once deployed but collecting training data that covers enough diseases is infeasible, which inspires us to develop a lifelong learning diagnosis system. In this work, we propose to adopt attention to combine medical entities and context, embedding episodic memory and consolidation to retain knowledge, such that the learned model is capable of adapting to sequential disease-diagnosis tasks. Moreover, we establish a new benchmark, named Jarvis-40, which contains clinical notes collected from various hospitals. Our experiments show that the proposed method can achieve state-of-the-art performance on the proposed benchmark.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset