Linear Last-Iterate Convergence for Continuous Games with Coupled Inequality Constraints
In this paper, the generalized Nash equilibrium (GNE) seeking problem for continuous games with coupled affine inequality constraints is investigated in a partial-decision information scenario, where each player can only access its neighbors' information through local communication although its cost function possibly depends on all other players' strategies. To this end, a novel decentralized primal-dual algorithm based on consensus and dual diffusion methods is devised for seeking the variational GNE of the studied games. This paper also provides theoretical analysis to show that the designed algorithm converges linearly for the last-iterate, which, to our best knowledge, is the first to propose a linearly convergent GNE seeking algorithm under coupled affine inequality constraints. Finally, a numerical example is presented to demonstrate the effectiveness of the obtained theoretical results.
READ FULL TEXT