Linear system identification from ensemble snapshot observations

03/15/2019
by   Atte Aalto, et al.
0

Developments in transcriptomics techniques have caused a large demand in tailored computational methods for modelling gene expression dynamics from experimental data. Recently, so-called single-cell experiments have revolutionised genetic studies. These experiments yield gene expression data in single cell resolution for a large number of cells at a time. However, the cells are destroyed in the measurement process, and so the data consist of snapshots of an ensemble evolving over time, instead of time series. The problem studied in this article is how such data can be used in modelling gene regulatory dynamics. Two different paradigms are studied for linear system identification. The first is based on tracking the evolution of the distribution of cells over time. The second is based on the so-called pseudotime concept, identifying a common trajectory through the state space, along which cells propagate with different rates. Therefore, at any given time, the population contains cells in different stages of the trajectory. Resulting methods are compared in numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset