LiveHand: Real-time and Photorealistic Neural Hand Rendering

02/15/2023
by   Akshay Mundra, et al.
0

The human hand is the main medium through which we interact with our surroundings, making its digitization an important problem. Hence, its digitization is of uttermost importance, with direct applications in VR/AR, gaming, and media production amongst other areas. While there are several works modeling the geometry of hands, little attention has been paid to capturing photo-realistic appearance. Moreover, for applications in extended reality and gaming, real-time rendering is critical. We present the first neural-implicit approach to photo-realistically render hands in real-time. This is a challenging problem as hands are textured and undergo strong articulations with pose-dependent effects. However, we show that this aim is achievable through our carefully designed method. This includes training on a low-resolution rendering of a neural radiance field, together with a 3D-consistent super-resolution module and mesh-guided sampling and space canonicalization. We demonstrate a novel application of perceptual loss on the image space, which is critical for learning details accurately. We also show a live demo where we photo-realistically render the human hand in real-time for the first time, while also modeling pose- and view-dependent appearance effects. We ablate all our design choices and show that they optimize for rendering speed and quality. Our code will be released to encourage further research in this area. The supplementary video can be found at: tinyurl.com/46uvujzn

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset