Local-Global Temporal Difference Learning for Satellite Video Super-Resolution

04/10/2023
by   Yi Xiao, et al.
0

Optical-flow-based and kernel-based approaches have been widely explored for temporal compensation in satellite video super-resolution (VSR). However, these techniques involve high computational consumption and are prone to fail under complex motions. In this paper, we proposed to exploit the well-defined temporal difference for efficient and robust temporal compensation. To fully utilize the temporal information within frames, we separately modeled the short-term and long-term temporal discrepancy since they provide distinctive complementary properties. Specifically, a short-term temporal difference module is designed to extract local motion representations from residual maps between adjacent frames, which provides more clues for accurate texture representation. Meanwhile, the global dependency in the entire frame sequence is explored via long-term difference learning. The differences between forward and backward segments are incorporated and activated to modulate the temporal feature, resulting in holistic global compensation. Besides, we further proposed a difference compensation unit to enrich the interaction between the spatial distribution of the target frame and compensated results, which helps maintain spatial consistency while refining the features to avoid misalignment. Extensive objective and subjective evaluation of five mainstream satellite videos demonstrates that the proposed method performs favorably for satellite VSR. Code will be available at <https://github.com/XY-boy/TDMVSR>

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset