Localized Vision-Language Matching for Open-vocabulary Object Detection

05/12/2022
by   Maria A. Bravo, et al.
11

In this work, we propose an open-world object detection method that, based on image-caption pairs, learns to detect novel object classes along with a given set of known classes. It is a two-stage training approach that first uses a location-guided image-caption matching technique to learn class labels for both novel and known classes in a weakly-supervised manner and second specializes the model for the object detection task using known class annotations. We show that a simple language model fits better than a large contextualized language model for detecting novel objects. Moreover, we introduce a consistency-regularization technique to better exploit image-caption pair information. Our method compares favorably to existing open-world detection approaches while being data-efficient.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset