Long term impact of fair machine learning in sequential decision making: representation disparity and group retention
Machine learning models trained on data from multiple demographic groups can inherit representation disparity (Hashimoto et al., 2018) that may exist in the data: the group contributing less to the training process may suffer higher loss in model accuracy; this in turn can degrade population retention in these groups over time in terms of their contribution to the training process of future models, which then exacerbates representation disparity in the long run. In this study, we seek to understand the interplay between the model accuracy and the underlying group representation and how they evolve in a sequential decision setting over an infinite horizon, and how the use of fair machine learning plays a role in this process. Using a simple user dynamics (arrival and departure) model, we characterize the long-term property of using machine learning models under a set of fairness criteria imposed on each stage of the decision process, including the commonly used statistical parity and equal opportunity fairness. We show that under this particular arrival/departure model, both these criteria cause the representation disparity to worsen over time, resulting in groups diminishing entirely from the sample pool, while the criterion of equalized loss fares much better. Our results serve to highlight the fact that fairness cannot be defined outside the larger feedback loop where past actions taken by users (who are either subject to the decisions made by the algorithm or whose data are used to train the algorithm or both) will determine future observations and decisions.
READ FULL TEXT