Low-pass filtering as Bayesian inference

02/09/2019
by   Cristobal Valenzuela, et al.
0

We propose a Bayesian nonparametric method for low-pass filtering that can naturally handle unevenly-sampled and noise-corrupted observations. The proposed model is constructed as a latent-factor model for time series, where the latent factors are Gaussian processes with non-overlapping spectra. With this construction, the low-pass version of the time series can be identified as the low-frequency latent component, and therefore it can be found by means of Bayesian inference. We show that the model admits exact training and can be implemented with minimal numerical approximations. Finally, the proposed model is validated against standard linear filters on synthetic and real-world time series.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset