Lower bounds for integration and recovery in L_2

08/26/2021
by   Aicke Hinrichs, et al.
0

Function values are, in some sense, "almost as good" as general linear information for L_2-approximation (optimal recovery, data assimilation) of functions from a reproducing kernel Hilbert space. This was recently proved by new upper bounds on the sampling numbers under the assumption that the singular values of the embedding of this Hilbert space into L_2 are square-summable. Here we mainly prove new lower bounds. In particular we prove that the sampling numbers behave worse than the approximation numbers for Sobolev spaces with small smoothness. Hence there can be a logarithmic gap also in the case where the singular numbers of the embedding are square-summable. We first prove new lower bounds for the integration problem, again for rather classical Sobolev spaces of periodic univariate functions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset