Lower Bounds for Non-Adaptive Shortest Path Relaxation
We consider single-source shortest path algorithms that perform a sequence of relaxation steps whose ordering depends only on the input graph structure and not on its weights or the results of prior steps. Each step examines one edge of the graph, and replaces the tentative distance to the endpoint of the edge by its minimum with the tentative distance to the start of the edge, plus the edge length. As we prove, among such algorithms, the Bellman-Ford algorithm has optimal complexity for dense graphs and near-optimal complexity for sparse graphs, as a function of the number of edges and vertices in the given graph. Our analysis holds both for deterministic algorithms and for randomized algorithms that find shortest path distances with high probability.
READ FULL TEXT