Lung Sound Classification Using Co-tuning and Stochastic Normalization

08/04/2021
by   Truc Nguyen, et al.
0

In this paper, we use pre-trained ResNet models as backbone architectures for classification of adventitious lung sounds and respiratory diseases. The knowledge of the pre-trained model is transferred by using vanilla fine-tuning, co-tuning, stochastic normalization and the combination of the co-tuning and stochastic normalization techniques. Furthermore, data augmentation in both time domain and time-frequency domain is used to account for the class imbalance of the ICBHI and our multi-channel lung sound dataset. Additionally, we apply spectrum correction to consider the variations of the recording device properties on the ICBHI dataset. Empirically, our proposed systems mostly outperform all state-of-the-art lung sound classification systems for the adventitious lung sounds and respiratory diseases of both datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset