M3ICRO: Machine Learning-Enabled Compact Photonic Tensor Core based on PRogrammable Multi-Operand Multimode Interference

05/31/2023
by   Jiaqi Gu, et al.
0

Photonic computing shows promise for transformative advancements in machine learning (ML) acceleration, offering ultra-fast speed, massive parallelism, and high energy efficiency. However, current photonic tensor core (PTC) designs based on standard optical components hinder scalability and compute density due to their large spatial footprint. To address this, we propose an ultra-compact PTC using customized programmable multi-operand multimode interference (MOMMI) devices, named M3ICRO. The programmable MOMMI leverages the intrinsic light propagation principle, providing a single-device programmable matrix unit beyond the conventional computing paradigm of one multiply-accumulate (MAC) operation per device. To overcome the optimization difficulty of customized devices that often requires time-consuming simulation, we apply ML for optics to predict the device behavior and enable a differentiable optimization flow. We thoroughly investigate the reconfigurability and matrix expressivity of our customized PTC, and introduce a novel block unfolding method to fully exploit the computing capabilities of a complex-valued PTC for near-universal real-valued linear transformations. Extensive evaluations demonstrate that M3ICRO achieves a 3.4-9.6x smaller footprint, 1.6-4.4x higher speed, 10.6-42x higher compute density, 3.7-12x higher system throughput, and superior noise robustness compared to state-of-the-art coherent PTC designs, while maintaining close-to-digital task accuracy across various ML benchmarks. Our code is open-sourced at https://github.com/JeremieMelo/M3ICRO-MOMMI.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset