Majority dynamics and the median process: connections, convergence and some new conjectures
We consider the median dynamics process in general graphs. In this model, each vertex has an independent initial opinion uniformly distributed in the interval [0,1] and, with rate one, updates its opinion to coincide with the median of its neighbors. This process provides a continuous analog of majority dynamics. We deduce properties of median dynamics through this connection and raise new conjectures regarding the behavior of majority dynamics on general graphs. We also prove these conjectures on some graphs where majority dynamics has a simple description.
READ FULL TEXT