Manifold Learning for Knowledge Discovery and Intelligent Inverse Design of Photonic Nanostructures: Breaking the Geometric Complexity

Here, we present a new approach based on manifold learning for knowledge discovery and inverse design with minimal complexity in photonic nanostructures. Our approach builds on studying sub-manifolds of responses of a class of nanostructures with different design complexities in the latent space to obtain valuable insight about the physics of device operation to guide a more intelligent design. In contrast to the current methods for inverse design of photonic nanostructures, which are limited to pre-selected and usually over-complex structures, we show that our method allows evolution from an initial design towards the simplest structure while solving the inverse problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset