Markov decision processes with observation costs

01/19/2022
by   Christoph Reisinger, et al.
0

We present a framework for a controlled Markov chain where the state of the chain is only given at chosen observation times and of a cost. Optimal strategies therefore involve the choice of observation times as well as the subsequent control values. We show that the corresponding value function satisfies a dynamic programming principle, which leads to a system of quasi-variational inequalities (QVIs). Next, we give an extension where the model parameters are not known a priori but are inferred from the costly observations by Bayesian updates. We then prove a comparison principle for a larger class of QVIs, which implies uniqueness of solutions to our proposed problem. We utilise penalty methods to obtain arbitrarily accurate solutions. Finally, we perform numerical experiments on three applications which illustrate our framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset