Max-Min Greedy Matching

03/14/2018
by   Alon Eden, et al.
0

A bipartite graph G(U,V;E) that admits a perfect matching is given. One player imposes a permutation π over V, the other player imposes a permutation σ over U. In the greedy matching algorithm, vertices of U arrive in order σ and each vertex is matched to the lowest (under π) yet unmatched neighbor in V (or left unmatched, if all its neighbors are already matched). The obtained matching is maximal, thus matches at least a half of the vertices. The max-min greedy matching problem asks: suppose the first (max) player reveals π, and the second (min) player responds with the worst possible σ for π, does there exist a permutation π ensuring to match strictly more than a half of the vertices? Can such a permutation be computed in polynomial time? The main result of this paper is an affirmative answer for this question: we show that there exists a polytime algorithm to compute π for which for every σ at least ρ > 0.51 fraction of the vertices of V are matched. We provide additional lower and upper bounds for special families of graphs, including regular and Hamiltonian. Interestingly, even for regular graphs with arbitrarily large degree (implying a large number of disjoint perfect matchings), there is no π ensuring to match more than a fraction 8/9 of the vertices. The max-min greedy matching problem solves an open problem regarding the welfare guarantees attainable by pricing in sequential markets with binary unit-demand valuations. In addition, it has implications for the size of the unique stable matching in markets with global preferences, subject to the graph structure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset