Maximizing Drift is Not Optimal for Solving OneMax

04/16/2019
by   Nathan Buskulic, et al.
0

It seems very intuitive that for the maximization of the OneMax problem f(x):=∑_i=1^nx_i the best that an elitist unary unbiased search algorithm can do is to store a best so far solution, and to modify it with the operator that yields the best possible expected progress in function value. This assumption has been implicitly used in several empirical works. In [Doerr, Doerr, Yang: GECCO 2016] it was formally proven that this approach is indeed almost optimal. In this work we prove that drift maximization is not optimal. More precisely, we show that for most fitness levels n/2<ℓ/2 < 2n/3 the optimal mutation strengths are larger than the drift-maximizing ones. This implies that the optimal RLS is more risk-affine than the variant maximizing the step-wise expected progress. We show similar results for the mutation rates of the classic (1+1) Evolutionary Algorithm (EA) and its resampling variant, the (1+1) EA_>0. As a result of independent interest we show that the optimal mutation strengths, unlike the drift-maximizing ones, can be even.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset