Maximum likelihood estimation of hidden Markov models for continuous longitudinal data with missing responses and dropout

06/30/2021
by   Silvia Pandolfi, et al.
0

We propose an inferential approach for maximum likelihood estimation of the hidden Markov models for continuous responses. We extend to the case of longitudinal observations the finite mixture model of multivariate Gaussian distributions with Missing At Random (MAR) outcomes, also accounting for possible dropout. The resulting hidden Markov model accounts for different types of missing pattern: (i) partially missing outcomes at a given time occasion; (ii) completely missing outcomes at a given time occasion (intermittent pattern); (iii) dropout before the end of the period of observation (monotone pattern). The MAR assumption is formulated to deal with the first two types of missingness, while to account for informative dropout we assume an extra absorbing state. Maximum likelihood estimation of the model parameters is based on an extended Expectation-Maximization algorithm relying on suitable recursions. The proposal is illustrated by a Monte Carlo simulation study and an application based on historical data on primary biliary cholangitis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset