May I Take Your Order? On the Interplay Between Time and Order in Process Mining
Process mining starts from event data. The ordering of events is vital for the discovery of process models. However, the timestamps of events may be unreliable or imprecise. To further complicate matters, also causally unrelated events may be ordered in time. The fact that one event is followed by another does not imply that the former causes the latter. This paper explores the relationship between time and order. Moreover, it describes an approach to preprocess event data having timestamp-related problems. This approach avoids using accidental or unreliable orders and timestamps, creates partial orders to capture uncertainty, and allows for exploiting domain knowledge to (re)order events. Optionally, the approach also generates interleavings to be able to use existing process mining techniques that cannot handle partially ordered event data. The approach has been implemented using ProM and can be applied to any event log.
READ FULL TEXT