Memory-Efficient Modeling and Slicing of Large-Scale Adaptive Lattice Structures

01/13/2021
by   Shengjun Liu, et al.
0

Lattice structures have been widely used in various applications of additive manufacturing due to its superior physical properties. If modeled by triangular meshes, a lattice structure with huge number of struts would consume massive memory. This hinders the use of lattice structures in large-scale applications (e.g., to design the interior structure of a solid with spatially graded material properties). To solve this issue, we propose a memory-efficient method for the modeling and slicing of adaptive lattice structures. A lattice structure is represented by a weighted graph where the edge weights store the struts' radii. When slicing the structure, its solid model is locally evaluated through convolution surfaces and in a streaming manner. As such, only limited memory is needed to generate the toolpaths of fabrication. Also, the use of convolution surfaces leads to natural blending at intersections of struts, which can avoid the stress concentration at these regions. We also present a computational framework for optimizing supporting structures and adapting lattice structures with prescribed density distributions. The presented methods have been validated by a series of case studies with large number (up to 100M) of struts to demonstrate its applicability to large-scale lattice structures.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset