MentorNet: Regularizing Very Deep Neural Networks on Corrupted Labels
Recent studies have discovered that deep networks are capable of memorizing the entire data even when the labels are completely random. Since deep models are trained on big data where labels are often noisy, the ability to overfit noise can lead to poor performance. To overcome the overfitting on corrupted training data, we propose a novel technique to regularize deep networks in the data dimension. This is achieved by learning a neural network called MentorNet to supervise the training of the base network, namely, StudentNet. Our work is inspired by curriculum learning and advances the theory by learning a curriculum from data by neural networks. We demonstrate the efficacy of MentorNet on several benchmarks. Comprehensive experiments show that it is able to significantly improve the generalization performance of the state-of-the-art deep networks on corrupted training data.
READ FULL TEXT