Meta-Aggregating Networks for Class-Incremental Learning

10/10/2020
by   Yaoyao Liu, et al.
0

Class-Incremental Learning (CIL) aims to learn a classification model with the number of classes increasing phase-by-phase. The inherent problem in CIL is the stability-plasticity dilemma between the learning of old and new classes, i.e., high-plasticity models easily forget old classes but high-stability models are weak to learn new classes. We alleviate this issue by proposing a novel network architecture called Meta-Aggregating Networks (MANets) in which we explicitly build two residual blocks at each residual level (taking ResNet as the baseline architecture): a stable block and a plastic block. We aggregate the output feature maps from these two blocks and then feed the results to the next-level blocks. We meta-learn the aggregating weights in order to dynamically optimize and balance between two types of blocks, i.e., between stability and plasticity. We conduct extensive experiments on three CIL benchmarks: CIFAR-100, ImageNet-Subset, and ImageNet, and show that many existing CIL methods can be straightforwardly incorporated on the architecture of MANets to boost their performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset