Meta-learning for Matrix Factorization without Shared Rows or Columns

06/29/2021
by   Tomoharu Iwata, et al.
0

We propose a method that meta-learns a knowledge on matrix factorization from various matrices, and uses the knowledge for factorizing unseen matrices. The proposed method uses a neural network that takes a matrix as input, and generates prior distributions of factorized matrices of the given matrix. The neural network is meta-learned such that the expected imputation error is minimized when the factorized matrices are adapted to each matrix by a maximum a posteriori (MAP) estimation. We use a gradient descent method for the MAP estimation, which enables us to backpropagate the expected imputation error through the gradient descent steps for updating neural network parameters since each gradient descent step is written in a closed form and is differentiable. The proposed method can meta-learn from matrices even when their rows and columns are not shared, and their sizes are different from each other. In our experiments with three user-item rating datasets, we demonstrate that our proposed method can impute the missing values from a limited number of observations in unseen matrices after being trained with different matrices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset