Methodology for forecasting and optimization in IEEE-CIS 3rd Technical Challenge
This report provides a description of the methodology I used in the IEEE-CIS 3rd Technical Challenge. For the forecast, I used a quantile regression forest approach using the solar variables provided by the Bureau of Meterology of Australia (BOM) and many of the weather variables from the European Centre for Medium-Range Weather Forecasting (ECMWF). Groups of buildings and all of the solar instances were trained together as they were observed to be closely correlated over time. Other variables used included Fourier values based on hour of day and day of year, and binary variables for combinations of days of the week. The start dates for the time series were carefully tuned based on phase 1 and cleaning and thresholding was used to reduce the observed error rate for each time series. For the optimization, a four-step approach was used using the forecast developed. First, a mixed-integer program (MIP) was solved for the recurring and recurring plus once-off activities, then each of these was extended using a mixed-integer quadratic program (MIQP). The general strategy was chosen from one of two ("array" from the "array" and "tuples" approaches) while the specific step improvement strategy was chosen from one of five ("no forced discharge").
READ FULL TEXT