MFAS: Multimodal Fusion Architecture Search

03/15/2019
by   Juan-Manuel Pérez-Rúa, et al.
0

We tackle the problem of finding good architectures for multimodal classification problems. We propose a novel and generic search space that spans a large number of possible fusion architectures. In order to find an optimal architecture for a given dataset in the proposed search space, we leverage an efficient sequential model-based exploration approach that is tailored for the problem. We demonstrate the value of posing multimodal fusion as a neural architecture search problem by extensive experimentation on a toy dataset and two other real multimodal datasets. We discover fusion architectures that exhibit state-of-the-art performance for problems with different domain and dataset size, including the NTU RGB+D dataset, the largest multi-modal action recognition dataset available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset