Mid-quantile regression for discrete responses

07/03/2019
by   Marco Geraci, et al.
0

We develop quantile regression methods for discrete responses by extending Parzen's definition of marginal mid-quantiles. As opposed to existing approaches, which are based on either jittering or latent constructs, we use interpolation and define the conditional mid-quantile function as the inverse of the conditional mid-distribution function. We propose a two-step estimator whereby, in the first step, conditional mid-probabilities are obtained nonparametrically and, in the second step, regression coefficients are estimated by solving an implicit equation. When constraining the quantile index to a data-driven admissible range, the second-step estimating equation has a least-squares type, closed-form solution. The proposed estimator is shown to be strongly consistent and asymptotically normal. A simulation study and real data applications are presented. Our methods can be applied to a large variety of discrete responses, including binary, ordinal, and count variables.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro