Minimizing the Sum of Age of Information and Transmission Cost under Stochastic Arrival Model

04/22/2021
by   Kumar Saurav, et al.
0

We consider a node-monitor pair, where updates are generated stochastically (according to a known distribution) at the node that it wishes to send to the monitor. The node is assumed to incur a fixed cost for each transmission, and the objective of the node is to find the update instants so as to minimize a linear combination of AoI of information and average transmission cost. First, we consider the Poisson arrivals case, where updates have an exponential inter-arrival time for which we derive an explicit optimal online policy. Next, for arbitrary distributions of inter-arrival time of updates, we propose a simple randomized algorithm that transmits any newly arrived update with a fixed probability (that depends on the distribution) or never transmits that update. The competitive ratio of the proposed algorithm is shown to be a function of the variance and the mean of the inter-arrival time distribution. For some of the commonly considered distributions such as exponential, uniform, and Rayleigh, the competitive ratio bound is shown to be 2.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset