Mining Block I/O Traces for Cache Preloading with Sparse Temporal Non-parametric Mixture of Multivariate Poisson
Existing caching strategies, in the storage domain, though well suited to exploit short range spatio-temporal patterns, are unable to leverage long-range motifs for improving hitrates. Motivated by this, we investigate novel Bayesian non-parametric modeling(BNP) techniques for count vectors, to capture long range correlations for cache preloading, by mining Block I/O traces. Such traces comprise of a sequence of memory accesses that can be aggregated into high-dimensional sparse correlated count vector sequences. While there are several state of the art BNP algorithms for clustering and their temporal extensions for prediction, there has been no work on exploring these for correlated count vectors. Our first contribution addresses this gap by proposing a DP based mixture model of Multivariate Poisson (DP-MMVP) and its temporal extension(HMM-DP-MMVP) that captures the full covariance structure of multivariate count data. However, modeling full covariance structure for count vectors is computationally expensive, particularly for high dimensional data. Hence, we exploit sparsity in our count vectors, and as our main contribution, introduce the Sparse DP mixture of multivariate Poisson(Sparse-DP-MMVP), generalizing our DP-MMVP mixture model, also leading to more efficient inference. We then discuss a temporal extension to our model for cache preloading. We take the first step towards mining historical data, to capture long range patterns in storage traces for cache preloading. Experimentally, we show a dramatic improvement in hitrates on benchmark traces and lay the groundwork for further research in storage domain to reduce latencies using data mining techniques to capture long range motifs.
READ FULL TEXT