Mixed Linear Layouts of Planar Graphs

09/01/2017
by   Sergey Pupyrev, et al.
0

A k-stack (respectively, k-queue) layout of a graph consists of a total order of the vertices, and a partition of the edges into k sets of non-crossing (non-nested) edges with respect to the vertex ordering. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 1-stack 1-queue layout in which every edge is assigned to a stack or to a queue that use a common vertex ordering. We disprove this conjecture by providing a planar graph that does not have such a mixed layout. In addition, we study mixed layouts of graph subdivisions, and show that every planar graph has a mixed subdivision with one division vertex per edge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset