MobileASR: A resource-aware on-device personalisation framework for automatic speech recognition in mobile phones
We describe a comprehensive methodology for developing user-voice personalised ASR models by effectively training models on mobile phones, allowing user data and models to be stored and used locally. To achieve this, we propose a resource-aware sub-model based training approach that considers the RAM, and battery capabilities of mobile phones. We also investigate the relationship between available resources and training time, highlighting the effectiveness of using sub-models in such scenarios. By taking into account the evaluation metric and battery constraints of the mobile phones, we are able to perform efficient training and halt the process accordingly. To simulate real users, we use speakers with various accents. The entire on-device training and evaluation framework was then tested on various mobile phones across brands. We show that fine-tuning the models and selecting the right hyperparameter values is a trade-off between the lowest achievable performance metric, on-device training time, and memory consumption. Overall, our methodology offers a comprehensive solution for developing personalized ASR models while leveraging the capabilities of mobile phones, and balancing the need for accuracy with resource constraints.
READ FULL TEXT