Mode Approximation Makes Good Vision-Language Prompts

05/15/2023
by   Haixin Wang, et al.
0

With the advance of large-scale model technologies, parameter-efficient transfer learning (PETL) has swept across various fields of Artificial Intelligence. Its core idea is to adapt the model to downstream tasks using only a small number of parameters. Recently, some studies have applied these techniques proven effective to multimodal tasks. However, two critical issues remain unresolved: how to further reduce the complexity with lightweight design and how to boost alignment between modalities under extremely low parameters. In this paper, we propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges. Considering the redundancy in existing architectures, we first utilize the mode approximation to generate few trainable parameters to implement the multi-modal prompt tuning, which explores the low intrinsic dimension with only 0.05 model. Then, to better narrow the modality gap, we propose the informative context enhancement and gated query transformation modules under extremely few parameters scenes. A thorough evaluation of the Aurora on six cross-modal downstream benchmarks shows that it not only outperforms the state-of-the-art, but even outperforms the full fine-tuning approach. Our code is available at: https://github.com/WillDreamer/Aurora.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset