Model-based Meta Reinforcement Learning using Graph Structured Surrogate Models

02/16/2021
by   Qi Wang, et al.
21

Reinforcement learning is a promising paradigm for solving sequential decision-making problems, but low data efficiency and weak generalization across tasks are bottlenecks in real-world applications. Model-based meta reinforcement learning addresses these issues by learning dynamics and leveraging knowledge from prior experience. In this paper, we take a closer look at this framework, and propose a new Thompson-sampling based approach that consists of a new model to identify task dynamics together with an amortized policy optimization step. We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics. Additionally, our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset