Model-free Training of End-to-end Communication Systems

12/14/2018
by   Fayçal Ait Aoudia, et al.
0

The idea of end-to-end learning of communication systems through neural network-based autoencoders has the shortcoming that it requires a differentiable channel model. We present in this paper a novel learning algorithm which alleviates this problem. The algorithm enables training of communication systems with an unknown channel model or with non-differentiable components. It iterates between training of the receiver using the true gradient, and training of the transmitter using an approximation of the gradient. We show that this approach works as well as model-based training for a variety of channels and tasks. Moreover, we demonstrate the algorithm's practical viability through hardware implementation on software-defined radios where it achieves state-of-the-art performance over a coaxial cable and wireless channel.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset