Model Selection, Adaptation, and Combination for Deep Transfer Learning through Neural Networks in Renewable Energies

04/28/2022
by   Jens Schreiber, et al.
7

There is recent interest in using model hubs, a collection of pre-trained models, in computer vision tasks. To utilize the model hub, we first select a source model and then adapt the model for the target to compensate for differences. While there is yet limited research on a model selection and adaption for computer vision tasks, this holds even more for the field of renewable power. At the same time, it is a crucial challenge to provide forecasts for the increasing demand for power forecasts based on weather features from a numerical weather prediction. We close these gaps by conducting the first thorough experiment for model selection and adaptation for transfer learning in renewable power forecast, adopting recent results from the field of computer vision on six datasets. We adopt models based on data from different seasons and limit the amount of training data. As an extension of the current state of the art, we utilize a Bayesian linear regression for forecasting the response based on features extracted from a neural network. This approach outperforms the baseline with only seven days of training data. We further show how combining multiple models through ensembles can significantly improve the model selection and adaptation approach. In fact, with more than 30 days of training data, both proposed model combination techniques achieve similar results to those models trained with a full year of training data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset