Modelling volatility with v-transforms
An approach to the modelling of financial return series using a class of uniformity-preserving transforms for uniform random variables is proposed. V-transforms describe the relationship between quantiles of the return distribution and quantiles of the distribution of a predictable volatility proxy variable constructed as a function of the return. V-transforms can be represented as copulas and permit the construction and estimation of models that combine arbitrary marginal distributions with linear or non-linear time series models for the dynamics of the volatility proxy. The idea is illustrated using a transformed Gaussian ARMA process for volatility, yielding the class of VT-ARMA copula models. These can replicate many of the stylized facts of financial return series and facilitate the calculation of marginal and conditional characteristics of the model including quantile measures of risk. Estimation of models is carried out by adapting the exact maximum likelihood approach to the estimation of ARMA processes.
READ FULL TEXT