Momentum Doesn't Change the Implicit Bias

10/08/2021
by   Bohan Wang, et al.
0

The momentum acceleration technique is widely adopted in many optimization algorithms. However, the theoretical understanding of how the momentum affects the generalization performance of the optimization algorithms is still unknown. In this paper, we answer this question through analyzing the implicit bias of momentum-based optimization. We prove that both SGD with momentum and Adam converge to the L_2 max-margin solution for exponential-tailed loss, which is the same as vanilla gradient descent. That means, these optimizers with momentum acceleration still converge to a model with low complexity, which provides guarantees on their generalization. Technically, to overcome the difficulty brought by the error accumulation in analyzing the momentum, we construct new Lyapunov functions as a tool to analyze the gap between the model parameter and the max-margin solution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset