MSDU-net: A Multi-Scale Dilated U-net for Blur Detection

06/05/2020
by   Fan Yang, et al.
15

Blur detection is the separation of blurred and clear regions of an image, which is an important and challenging task in computer vision. In this work, we regard blur detection as an image segmentation problem. Inspired by the success of the U-net architecture for image segmentation, we design a Multi-Scale Dilated convolutional neural network based on U-net, which we call MSDU-net. The MSDU-net uses a group of multi-scale feature extractors with dilated convolutions to extract texture information at different scales. The U-shape architecture of the MSDU-net fuses the different-scale texture features and generates a semantic feature which allows us to achieve better results on the blur detection task. We show that using the MSDU-net we are able to outperform other state of the art blur detection methods on two publicly available benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset