Multi-agent reinforcement learning for intent-based service assurance in cellular networks

08/07/2022
by   Satheesh K. Perepu, et al.
0

Recently, intent-based management is receiving good attention in telecom networks owing to stringent performance requirements for many of the use cases. Several approaches on the literature employ traditional methods in the telecom domain to fulfill intents on the KPIs, which can be defined as a closed loop. However, these methods consider every closed-loop independent of each other which degrades the combined closed-loop performance. Also, when many closed loops are needed, these methods are not easily scalable. Multi-agent reinforcement learning (MARL) techniques have shown significant promise in many areas in which traditional closed-loop control falls short, typically for complex coordination and conflict management among loops. In this work, we propose a method based on MARL to achieve intent-based management without the requirement of the model of the underlying system. Moreover, when there are conflicting intents, the MARL agents can implicitly incentivize the loops to cooperate, without human interaction, by prioritizing the important KPIs. Experiments have been performed on a network emulator on optimizing KPIs for three services and we observe the proposed system performs well and is able to fulfill all existing intents when there are enough resources or prioritize the KPIs when there are scarce resources.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset