Multi-Focus Image Fusion Via Coupled Sparse Representation and Dictionary Learning

05/30/2017
by   Rui Gao, et al.
0

We address the multi-focus image fusion problem, where multiple images captured with different focal settings are to be fused into an all-in-focus image of higher quality. Algorithms for this problem necessarily admit the source image characteristics along with focused and blurred feature. However, most sparsity-based approaches use a single dictionary in focused feature space to describe multi-focus images, and ignore the representations in blurred feature space. Here, we propose a multi-focus image fusion approach based on coupled sparse representation. The approach exploits the facts that (i) the patches in given training set can be sparsely represented by a couple of overcomplete dictionaries related to the focused and blurred categories of images; and (ii) merging such representations leads to a more flexible and therefore better fusion strategy than the one based on just selecting the sparsest representation in the original image estimate. By jointly learning the coupled dictionary, we enforce the similarity of sparse representations in the focused and blurred feature spaces, and then introduce a fusion approach to combine these representations for generating an all-in-focus image. We also discuss the advantages of the fusion approach based on coupled sparse representation and present an efficient algorithm for learning the coupled dictionary. Extensive experimental comparisons with state-of-the-art multi-focus image fusion algorithms validate the effectiveness of the proposed approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset