Multi S-graphs: A Collaborative Semantic SLAM architecture

Collaborative Simultaneous Localization and Mapping (CSLAM) is a critical capability for enabling multiple robots to operate in complex environments. Most CSLAM techniques rely on the transmission of low-level features for visual and LiDAR-based approaches, which are used for pose graph optimization. However, these low-level features can lead to incorrect loop closures, negatively impacting map generation.Recent approaches have proposed the use of high-level semantic information in the form of Hierarchical Semantic Graphs to improve the loop closure procedures and overall precision of SLAM algorithms. In this work, we present Multi S-Graphs, an S-graphs [1] based distributed CSLAM algorithm that utilizes high-level semantic information for cooperative map generation while minimizing the amount of information exchanged between robots. Experimental results demonstrate the promising performance of the proposed algorithm in map generation tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset